jueves, 12 de marzo de 2009

Central geotérmica


La energía geotérmica es aquella energía que puede ser obtenida por el hombre mediante el aprovechamiento del calor del interior de la Tierra. El calor del interior de la Tierra se debe a varios factores, entre los que caben destacar el gradiente geotérmico, el calor radiogénico, etc. Geotérmico viene del griego geo, "Tierra", y thermos, "calor"; literalmente "calor de la Tierra".



Se obtiene energía geotérmica por extracción del calor interno de la Tierra. En áreas de aguas termales muy calientes a poca profundidad, se perfora por fracturas naturales de las rocas basales o dentro de rocas sedimentarios. El agua caliente o el vapor pueden fluir naturalmente, por bombeo o por impulsos de flujos de agua y de vapor (flashing). El método a elegir depende del que en cada caso sea económicamente rentable. Un ejemplo, en Inglaterra, fue el "Proyecto de Piedras Calientes HDR" (sigla en inglés: HDR, Hot Dry Rocks), abandonado después de comprobar su inviabilidad económica en 1989. Los programas HDR se están desarrollando en Australia, Francia, Suiza, Alemania. Los recursos de magma (rocas fundidas) ofrecen energía geotérmica de altísima temperatura, pero con la tecnología existente no se pueden aprovechar económicamente esas fuentes.
En la mayoría de los casos la explotación debe hacerse con dos pozos (o un número par de pozos), de modo que por uno se obtiene el agua caliente y por otro se vuelve a reinyectar en el acuífero, tras haber enfriado el caudal obtenido.

En Europa, los países líderes en el desarrollo de energía geotérmica son Italia, con 810 megavatios, e Islandia, con 420 megavatios. Se espera que Italia casi doble su capacidad instalada antes de 2020. Islandia, con el 27 % de sus necesidades de electricidad cubiertas extrayendo el calor de la tierra, es el número uno mundial en la proporción de electricidad generada de energía geotérmica. Alemania, con sólo 8 megavatios de capacidad instalada, queda por detrás, pero está comenzando a ver los efectos de una tarifa de venta de 0,15 € por kilovatio-hora que fue implementada en 2004. Casi 150 plantas están actualmente en desarrollo en Alemania, con la mayor parte de la actividad centrada en Baviera. Diez de los 15 países líderes que producen electricidad geotérmica están en el mundo en desarrollo. Filipinas, que genera el 23 por ciento de su electricidad de la energía geotérmica, es el segundo productor del mundo por detrás de Estados Unidos. Las Filipinas apuntan a aumentar su capacidad geotérmica instalada antes de 2013 en más del 60 %, a 3.130 megavatios. Indonesia, el tercero del mundo, tiene incluso mayores planes, añadiendo 6.870 megavatios de nueva capacidad geotérmica en desarrollo durante los 10 siguientes años, igual a casi el 30 % de su capacidad de generación de electricidad actual de todas las fuentes. Pertamina, la compañía indonesa del petróleo del estado, proyecta la construcción de la mayor parte de esta nueva capacidad, agregando su nombre a la lista de compañías de energía que están comenzando a diversificar en el mercado de la energía renovable.Los Estados Unidos lideran el mundo en la generación de electricidad del calor de la tierra. En agosto de 2008, la capacidad geotérmica en Estados Unidos sumó casi 2.960 megavatios en siete estados: Alaska, California, Hawaii, Idaho, Nevada, New México y Utah. California, con 2.555 megavatios de capacidad instalada -más que cualquier otro país en mundo- produce casi el 5 % de su electricidad con energía geotérmica. La mayor parte de esta capacidad está instalada en un área llamada los Geysers, una región geológicamente activa al norte de San Francisco.


Impacto ambientales

Impactos producidos durante la fase de Exploración, Perforación y Construcción

La construcción de caminos de acceso puede ocasionar la destrucción de bosques o áreas naturales, mientras que el emprendimiento en sí mismo puede ocasionar disturbios en el ecosistema local, por ejemplo: ruidos, polvos, humos, y también, en algunas zonas, puede causar erosión del suelo, la que deriva a largo plazo en desertización.
El ruido se ocasiona durante la fase de exploración, construcción y producción. Muchas veces los niveles pueden traspasar el umbral del dolor (120 dBa). En el mismo emplazamiento, los trabajadores deben estar protegidos con elementos personales de protección auditiva. También se pueden instalar silenciadores adecuados en las maquinarias. Los ruidos en los alrededores del emplazamiento pueden ser reducidos restringiendo las operaciones ruidosas a las horas diurnas, también se pueden construir barreras absorbentes de sonido, como son las barreras de árboles.
Durante condiciones normales de operación, debería ser posible mantener los niveles de ruido tan bajos que a una distancia de 1 kilómetro, el ruido no debería poder ser distinguido de otros ruidos de fondo.

Impactos producidos durante la fase de Operación
Emisiones Gaseosas
Los gases no condensables, acarreados por el vapor geotérmico, deben ser liberados a la atmósfera (dependiendo de qué tipo de planta de generación es utilizada). Estos están compuestos principalmente por: dióxido de carbono y sulfuros de hidrógeno, con trazas de amoníaco, hidrógeno, nitrógeno, metano, radón y algunas especies volátiles como boro, arsénico y mercurio.
El sulfuro de hidrógeno causa molestias por el desagradable olor que ocasiona, a altas concentraciones puede dañar el sistema respiratorio y a mayores llega a ser fatal. Estas emisiones pueden ser reducidas usando tecnologías conocidas y disponibles de disminución de esta familia de gases.
Por su parte, el amoníaco es irritante y el radón es carcinógeno por inhalación, pero las emisiones normalmente son bajas y no causan problemas.
Las emisiones de boro y mercurio son normalmente tan bajas que no constituyen un riesgo a la salud. Igualmente estos metales pueden depositarse en los suelos y si se transportan por escurrimiento desde allí pueden contribuir a la contaminación de las aguas subterráneas y a las superficiales.

Contaminación de los cursos de agua superficiales
Los problemas de contaminación pueden provenir de la disposición en la superficie de fluidos geotérmicos, los que contienen un amplio rango de iones (sodio, potasio, calcio, flúor, magnesio, silicatos, iodatos, antimonio, estroncio, bicarbonato, etc). Los que causan mayor preocupación son los químicos de mayor toxicidad como ser: boro, litio, arsénico, sulfuro de hidrógeno, mercurio, rubidio y amoníaco. La mayoría de ellos se diluyen y permanecen en solución en el agua por lo que pueden ingresar en la vegetación acuática y de allí pasar a los peces. Los más pesados caerán y terminarán en los sedimentos del lecho del cuerpo de agua, es peligroso que se acumulen por mucho tiempo se acumulen hasta alcanzar altas concentraciones. Los sistemas de tratamiento de efluentes suelen ser económicamente caros, por lo que pocas veces son utilizados para remover los minerales del efluente. Los impactos de la descarga del agua residual pueden ser mitigados a través de la colecta y de la re inyección de esta en el sistema.
Contaminación del suelo y de las aguas subterráneas
La contaminación de las primeras napas de agua subterránea puede provenir de:
* Líquidos utilizados en la etapa de perforación
* Infiltraciones por orificios en las paredes del pozo en la etapa de re -inyección, las que hacen que el líquido contaminado escurra hacia las primeras napas de agua subterránea.
* Fallos en la impermeabilidad de las piletas de evaporación, y sus consecuentes infiltraciones
Todas estas situaciones problemáticas pueden ser evitadas, con diseños de planta apropiados y con monitoreos periódicos de las napas subterráneas. Es importante trabajar con controles de calidad principalmente en la etapa de perforación y construcción.
Depresión del acuífero
Los niveles de agua subterránea pueden ser deprimidos bajo ciertas condiciones, principalmente en plantas de aprovechamiento de energía geotérmica que trabajan altas temperaturas. Estas situaciones pueden ser evitadas controlando y manteniendo la presión de las reservas de agua. Los niveles de agua también pueden disminuir como consecuencia de rupturas en las paredes de pozos en desuso, esta situación se puede prevenir, monitoreando el estado de estos pozos y reparándolos rápidamente ante cualquier problema.
Hundimiento o subsidencia del terreno
En los emprendimiento geotérmicos, los fluidos geotérmicos son retirados de los acuíferos a una tasa mayor que la entrada natural de líquido hacia el mismo. Esto puede compactar las formaciones rocosas en el lugar llevando a el hundimiento del terreno. Hay muy poco para hacer al respecto, lo único que se puede hacer para evitar estos efectos es mantener la presión del acuífero.

Uso del suelo
Las plantas de aprovechamiento de la energía geotérmica deben ser construidas sobre sitios específicos. En caso de que estos sitios también tengan alto valor paisajístico, las estructuras que están sobre tierra pueden causar impacto visual. Es positivo que el aprovechamiento de la energía geotérmica, a su vez permite que en el mismo terreno donde se encuentran estos emprendimientos se desarrollen otros usos del suelo diferentes.
La superficie utilizada puede ser menor en el caso de que se utilicen técnicas de perforación direccional.

Impacto Visual
Las plantas de aprovechamiento de la energía geotérmica, suelen pasar casi desapercibidas en el terreno. Lo que ocurre es que muchas veces su impacto visual es significativo porque los sitios de alto valor geotérmico se suelen superponer en el espacio a sitios de gran valor natural y paisajístico.

También pueden contener atracciones turísticas como ser géisers y zonas de piletas naturales con aguas termales. La fase de explotación de estos emprendimientos de aprovechamiento de la energía de la tierra hace que la presión del acuífero decline por lo que las atracciones antes mencionadas pierden caudal y los turistas acuden en menor número a estas zonas.
Potenciales sucesos catastróficos
Los principales sucesos catastróficos que pueden ocurrir en una planta de aprovechamiento de la energía geotérmica son:

*En zonas con alta actividad tectónica, la re - inyección de fluidos en el terreno durante la explotación de las reservas puede aumentar la frecuencia de pequeños terremotos en la zona. Estos efectos pueden ser minimizados reduciendo las presiones de re- inyección al mínimo y asegurando que los posibles edificios afectados por los movimientos sísimicos estén preparados para soportar la intensidad de estos terremotos. La actividad sísmica de mayor intensidad podría causar filtraciones de fluidos a algunas partes indeseadas del sistema.
* La voladura o explosión de los pozos eran sucesos comunes en las primeras épocas de la perforación en profundidad, pero en la actualidad es muy extraño que alguno de estos sucesos ocurra. Su frecuencia puede aún ser minimizada a través del uso de equipos de prevención de voladuras y utilizando correctos procedimientos de perforación.

* Las erupciones hidrotermales son extrañas y ocurren cuando la presión de vapor en los acuíferos se intensifica y eyecta hacia arriba la tierra que lo cubre, creando un cráter. Mantener la presión en las reservas puede ayudar a reducir la frecuencia de la ocurrencia de erupciones, también se deben evitar las excavaciones en terrenos con actividad termal.

* Muchos de los emprendimientos de aprovechamiento de la energía geotérmica se encuentran en terrenos accidentados y es por eso que son más susceptibles que un terreno llano a deslizamientos del suelo. Esto puede ocasionar graves accidentes si las rocas que caen dañan las cabezas de los pozos o las tuberías, lo que podría resultar en el escape de vapores y líquidos a alta temperatura. La posibilidad de ocurrencia puede ser minimizada estabilizando todas las pendientes susceptibles de sufrir deslizamientos de tierra, aunque esto podría aumentar el impacto visual del emprendimiento

Técnicas para reducir el impacto ambiental
La reinyección ha sido empleada en varias partes del mundo como una forma de reducir drásticamente el impacto ambiental de la operación de plantas geotérmicas.

Centrales instaladas en el mundo
Planta geotérmica de Nesjavellir en Islandia. En Filipinas y en algunos paises más

martes, 10 de marzo de 2009

Centrales mareomotrices


La energía mareomotriz es la que resulta de aprovechar las mareas, es decir, la diferencia de altura media de los mares según la posición relativa de la Tierra y la Luna, y que resulta de la atracción gravitatoria de esta última y del Sol sobre las masas de agua de los mares. Esta diferencia de alturas puede aprovecharse interponiendo partes móviles al movimiento natural de ascenso o descenso de las aguas, junto con mecanismos de canalización y depósito, para obtener movimiento en un eje i ese movimiento convertirlo en energia electrica la cual mas tarde llega a nuestras casas en forma de energia luminica la mayor parte de las veces.

Mediante su acoplamiento a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más útil y aprovechable. Es un tipo de energía renovable limpia.

La energía mareomotriz tiene la cualidad de ser renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una proliferación notable de este tipo de energía.

Otras formas de extraer energía del mar son: las olas, la energía undimotriz; de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico; de la salinidad; de las corrientes submarinas o la eólica marina

En España, el Gobierno de Cantabria y el Instituto para la Diversificación y Ahorro Energético (IDAE) quieren crear un centro de I+D+i en la costa de Santoña. La planta podría atender al consumo doméstico anual de unos 2.500 hogares

Otros proyectos similares, como el de una central mucho mayor prevista en Francia en la zona del Mont Saint Michel, o el de la Bahía de Fundy en Canadá, donde se dan hasta 10 metros de diferencia de marea, o el del estuario del río Severn, en el reino Unido, entre Gales e Inglaterra, no han llegado a ejecutarse por el riesgo de un fuerte impacto medioambiental.

Centrales eólicas


Energía eólica es la energía obtenida del viento, o sea, la energía cinética generada por efecto de las corrientes de aire, y que es transformada en otras formas útiles para las actividades humanas.

El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.

En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigavatios. Mientras la eólica genera alrededor del 1% del consumo de electricidad mundial,representa alrededor del 19% de la producción eléctrica en Dinamarca, 9% en España y Portugal, y un 6% en Alemania e Irlanda (Datos del 2007).

La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde . Sin embargo, el principal inconveniente es su intermitencia.

Funcionamiento


La energía del viento está relacionada con el movimiento de las masas de aire que se desplazan de áreas de alta presión atmosférica hacia áreas adyacentes de baja presión, con velocidades proporcionales al gradiente de presión.

Los vientos son generados a causa del calentamiento no uniforme de la superficie terrestre por parte de la radiación solar, entre el 1 y 2% de la energía proveniente del sol se convierte en viento. De día, las masas de aire sobre los océanos, los mares y los lagos se mantienen frías con relación a las áreas vecinas situadas sobre las masas continentales.

Los continentes absorben una menor cantidad de luz solar, por lo tanto el aire que se encuentra sobre la tierra se expande, y se hace por lo tanto más liviana y se eleva. El aire más frío y más pesado que proviene de los mares, océanos y grandes lagos se pone en movimiento para ocupar el lugar dejado por el aire caliente.

Para poder aprovechar la energía eólica es importante conocer las variaciones diurnas y nocturnas y estacionales de los vientos, la variación de la velocidad del viento con la altura sobre el suelo, la entidad de las ráfagas en espacios de tiempo breves, y valores máximos ocurridos en series históricas de datos con una duración mínima de 20 años. Es también importante conocer la velocidad máxima del viento. Para poder utilizar la energía del viento, es necesario que este alcance una velocidad mínima de 12 km/h, y que no supere los 65 km/h.[3]

La energía del viento es utilizada mediante el uso de máquinas eólicas (o aeromotores) capaces de transformar la energía eólica en energía mecánica de rotación utilizable, ya sea para accionar directamente las máquinas operatrices, como para la producción de energía eléctrica. En este último caso, el sistema de conversión, (que comprende un generador eléctrico con sus sistemas de control y de conexión a la red) es conocido como aerogenerador.

La baja densidad energética, de la energía eólica por unidad de superficie, trae como consecuencia la necesidad de proceder a la instalación de un número mayor de máquinas para el aprovechamiento de los recursos disponibles. El ejemplo más típico de una instalación eólica está representada por los "parques eólicos" (varios aerogeneradores implantados en el territorio conectados a una única línea que los conecta a la red eléctrica local o nacional).

En la actualidad se utiliza, sobre todo, para mover aerogeneradores. En estos la energía eólica mueve una hélice y mediante un sistema mecánico se hace girar el rotor de un generador, normalmente un alternador, que produce energía eléctrica. Para que su instalación resulte rentable, suelen agruparse en concentraciones denominadas parques eólicos.

Impacto ambiental

Generalmente se combina con centrales térmicas, lo que lleva a que existan quienes critican que realmente no se ahorren demasiadas emisiones de dióxido de carbono. No obstante, hay que tener en cuenta que ninguna forma de producción de energía tiene el potencial de cubrir toda la demanda y la producción energética basada en renovables es menos contaminante, por lo que su aportación a la red eléctrica es netamente positiva.

Existen parques eólicos en España en espacios protegidos como ZEPAs (Zona de Especial Protección de Aves) y LIC (Lugar de Importancia Comunitaria) de la Red Natura 2000, lo que es una contradicción. Si bien la posible inserción de alguno de estos parques eólicos en las zonas protegidas ZEPAS y LIC tienen un impacto reducido debido al aprovechamiento natural de los recursos, cuando la expansión humana invade estas zonas, alterándolas sin que con ello se produzca ningún bien.

Al comienzo de su instalación, los lugares seleccionados para ello coincidieron con las rutas de las aves migratorias, o zonas donde las aves aprovechan vientos de ladera, lo que hace que entren en conflicto los aerogeneradores con aves y murciélagos. Afortunadamente los niveles de mortandad son muy bajos en comparación con otras causas como por ejemplo los atropellos (ver gráfico). Aunque algunos expertos independientes aseguran que la mortandad es alta. Actualmente los estudios de impacto ambiental necesarios para el reconocimiento del plan del parque eólico tienen en consideración la situación ornitológica de la zona.

Además, dado que los aerogeneradores actuales son de baja velocidad de rotación, el problema de choque con las aves se está reduciendo.El impacto paisajístico es una nota importante debido a la disposición de los elementos horizontales que lo componen y la aparición de un elemento vertical como es el aerogenerador. Producen el llamado efecto discoteca: este efecto aparece cuando el sol está por detrás de los molinos y las sombras de las aspas se proyectan con regularidad sobre los jardines y las ventanas, parpadeando de tal modo que la gente denominó este fenómeno: “efecto discoteca”. Esto, unido al ruido, puede llevar a la gente hasta un alto nivel de estrés, con efectos de consideración para la salud. No obstante, la mejora del diseño de los aerogeneradores ha permitido ir reduciendo el ruido que producen.

La apertura de pistas y la presencia de operarios en los parques eólicos hace que la presencia humana sea constante en lugares hasta entonces poco transitados. Ello afecta también a la fauna.

Técnicas para reducir el impacto ambiental

Instalarlas en lugares apartados y que no fastidien mucho el paisaje. Construirlos más pequeños para reducir el impacto paisajistico...

Centrales instaladas en España

España es el segundo país con más centrales eólicas del mundo. Menos en la comunidad de madride y extremadura hay centrales eólicas en toda españa.Alemania, España, Estados Unidos, India y Dinamarca han realizado las mayores inversiones en generación de energía eólica. Dinamarca es, en términos relativos, la más destacada en cuanto a fabricación y utilización de turbinas eólicas, con el compromiso realizado en los años 1970 de llegar a obtener la mitad de la producción de energía del país mediante el viento. Actualmente genera más del 20% de su electricidad mediante aerogeneradores, mayor porcentaje que cualquier otro país, y es el quinto en producción total de energía eólica, a pesar de ser el país número 56 en cuanto a consumo eléctrico.

viernes, 6 de marzo de 2009

Centrales de Biomassa


¿Qué podemos entender por Biomasa?Conjunto de materia orgánica renovable, puede ser de origen animal, vegetal, procedente de la transformación bien sea natural o artificial.Los orígenes como vemos pueden ser variados aunque con un algo común, derivar, bien sea directa o indirectamente el proceso de fotosíntesis.La Biomasa al igual que otras fuentes de energía renovable, se caracteriza por su menor impacto ambiental, frente a otras fuentes de energía.


Los Tipos de Biomasa pueden ser por tanto:



1.- Biomasa Residual (residuos forestales y agrícolas, residuos sólidos urbanos, residuos de Industrias forestales y agrícolas, residuos Biodegradables).



2.- Biomasa Natural (es la que se produce en ecosistemas naturales).



3.- Cultivos Energéticos (son los realizados con el único objeto de su aprovechamiento).



4.- Excedentes Agrícolas (excedentes agrícolas que no sean empleados en la alimentación).



¿Cómo es una central de biomasa?
Una central de biomasa se ocupa de obtener energía eléctrica mediante los diferentes procesos de transformación de la materia orgánica.


Básicamente el funcionamiento de una central es el siguiente:

1. La biomasa recogida se prepara para transformarla en combustible líquido.
2. Este combustible se quema y se calienta agua.
3. Se produce vapor a alta presión que mueve la turbina y esta a su vez mueve el generador que producirá energía eléctrica.
4. La energía eléctrica producida es transportada por el tendido eléctrica.
5. El calor producido por el vapor se transmite en forma de agua caliente.



Centrales instaladas en España o e el mundo

La compañía Iberdrola instalará la primera central de biomasa de residuos forestales de España en Corduente (Guadalajara), un municipio próximo a la zona afectada por el incendio forestal que el pasado mes de julio asoló casi 13.000 hectáreas. Hay bastantes repartidas por todo el mundo pero La central eléctrica de biomasa más grande del mundo acaba de ponerse en servicio en el extremo este de Alemania, en la frontera germanopolaca, en un pueblo llamado Penkun.

Impacto ambiental

Las instalaciones de generación de energía a partir de la combustión de leña y residuos forestales, en la medida en que sean sometidas a un correcto esquema de mantenimiento y adecuadamente conducidas y reguladas durante su funcionamiento, no presentan per se un impacto ambiental negativo en su entorno.
El principal impacto ambiental potencial de estos aprovechamientos se dá cuando no existe una correcta planificación en la provisión del combustible, en lo que hace a su procedencia y cantidad, induciendo de esa manera a la eventual depredación del recurso.
Este factor desaparece en los casos en que se dispone como combustible de los residuos de explotación y/o industrialización de madera o bien se utiliza leña comercial.
Las restantes fuentes de impacto ambiental están constituidas por las emisiones y afluentes propios del funcionamiento de la planta y por la posible contaminación a través de ruidos o vibraciones.
En el primer aspecto, los combustibles biomásicos no presentan mayor nivel potencial de contaminación que otros combustibles, sobre todo si se mantiene un adecuado control de la combustión y se utilizan medios aptos para en control de las emisiones. En los casos de cogeneración no existe impacto adicional por la producción de energía eléctrica, ya que el vapor debe ser producido para alimentar el proceso principal.
En el segundo aspecto, y en particular para los motores de vapor verticales rápidos, la influencia no es diferente de la de los grupos motogeneradores Diesel.

jueves, 5 de marzo de 2009

Centrales Fotovoltaicas


Se denomina energía solar fotovoltaica a una forma de obtención de energía eléctrica a través de paneles fotovoltaicos.

Los paneles, módulos o colectores fotovoltaicos están formados por dispositivos semiconductores tipo diodo que, al recibir radiación solar, se excitan y provocan saltos electrónicos, generando una pequeña diferencia de potencial en sus extremos. El acoplamiento en serie de varios de estos fotodiodos permite la obtención de voltajes mayores en configuraciones muy sencillas y aptas para alimentar pequeños dispositivos electrónicos.

A mayor escala, la corriente eléctrica continua que proporcionan los paneles fotovoltaicos se puede transformar en corriente alterna e inyectar en la red eléctrica, operación que es muy rentable económicamente pero que precisa todavía de subvenciones para una mayor viabilidad.

El proceso, simplificado, sería el siguiente: Se genera la energía a bajas tensiones (380-800 V) y en corriente continua. Se transforma con un inversor en corriente alterna. Mediante un centro de transformación se eleva a Media tensión (15 ó 25 kV) y se inyecta en las redes de transporte de la compañía.

Los módulos fotovoltaicos o colectores solares fotovoltaicos (llamados a veces paneles solares, aunque esta denominación abarca otros dispositivos) están formados por un conjunto de celdas (células fotovoltaicas) que producen electricidad a partir de la luz que incide sobre ellos. El parámetro estandarizado para clasificar su potencia se denomina potencia pico, y se corresponde con la potencia máxima que el módulo puede entregar bajo unas condiciones estandarizadas, que son:
- radiación de 1000 W/m2
- temperatura de célula de 25ºC (no temperatura ambiente).
Las placas fotovoltaicas se dividen en:
-Cristalinas

-Monocristalinas: se componen de secciones de un único cristal de silicio (reconocibles por su forma circular u octogonal, donde los 4 lados cortos, si se observa, se aprecia que son curvos, debido a que es una célula circular recortada).

-Policristalinas: cuando están formadas por pequeñas partículas cristalizadas.

-Amorfas: cuando el silicio no se ha cristalizado.
Su efectividad es mayor cuanto mayores son los cristales, pero también su peso, grosor y coste. El rendimiento de las primeras puede alcanzar el 20% mientras que el de las últimas puede no llegar al 10%, sin embargo su coste y peso es muy inferior.


Centrales instaladas en españa


En Murcia, en Navarra, en el País Vasco, en Extremadura... Y muchas personas utilizan paneles solares en sus casas para el uso diario. Aunque estos paneles valen basnte dinero y son cotosos de instalar y tienes que tener una casa donde lo puedas poner ya que en un piso sería muy complicado. La central de Navarra es una de las mejores de Europa ya que puede producir energia suficiente para una población de 180.000 habitantes.

Ventajas:
En su versión más sencilla, no posee partes móviles o propensas a romperse, haciéndola ideal para los lugares poco accesibles o en los que no existe personal constantemente.
Los sistemas basados en paneles fotovoltaicos pueden crecer de forma modular con modificaciones muy sencillas a la estación existente previamente. De este modo pueden pasar de un solo panel a varios cientos para instalaciones a gran escala.


Inconvenientes:
Aunque el silicio es barato (material utilizado para su construcción), el proceso de creación de las obleas finales es muy complejo y caro.
Por otra parte, el rendimiento obtenido de la luz solar no es muy elevado si se le compara con el terreno que ocupa, aproximadamente un 13% de la energía solar recibida se transforma en solar

Impacto ambiental nulo: la energía solar no produce desechos, ni residuos, basuras...

jueves, 26 de febrero de 2009

Nuclears


Una central nuclear es una instalación industrial empleada para la generación de energía


eléctrica El funcionamiento de las centrales térmicas nucleares es muy semejante al de las térmicas convencionales. La diferencia está en el combustible utilizado para producir energía. En el caso de las centrales térmicas se usan combustibles fósiles (carbón, petróleo, gas) y en las nucleares, uranio o plutonio.



1. En las centrales térmicas y nucleares, el calor obtenido de los combustibles (combustión y reacción nuclear, respectivamente) se emplea para calentar el agua contenida en una caldera, que se transforma en vapor de agua.



2. Ese vapor se conduce a una turbina, moviendo los álabes o aspas de ésta.



3. El eje de la turbina está conectado a un generador de corriente, transformando la energía mecánica en energía eléctrica.



4. El vapor que sale de la turbina se condensa, al pasar por un circuito de refrigeración, y regresa a la caldera.



Desde una sala de control se gobierna la central y se manejan los dispositivos de seguridad que detienen el reactor en cuanto se atisba el mínimo riesgo de escape o mal funcionamiento


A partir de energía nuclear, que se caracteriza por el empleo de materiales fisionables que mediante reacciones nucleares proporcionan calor. Este calor es empleado por un ciclo termodinámico convencional para mover un alternador y producir energía eléctrica.
Estas centrales constan de uno o varios reactores, que son contenedores (llamados habitualmente vasijas) en cuyo interior se albergan varillas u otras configuraciones geométricas de minerales con algún elemento fisil (es decir, que puede fisionarse) o fértil (que puede convertirse en fisil por reacciones nucleares), usualmente uranio, y en algunos combustibles también plutonio, generado a partir de la activación del uranio. En el proceso de fisión radiactiva, se establece una reacción que es sostenida y moderada mediante el empleo de elementos auxiliares dependientes del tipo de tecnología empleada.

Torres de refrigeración de la central nuclear de Cofrentes, España, expulsando vapor de agua.
Las instalaciones nucleares son construcciones muy complejas por la variedad de tecnologías industriales empleadas y por la elevada seguridad con la que se les dota. Las características de la reacción nuclear hacen que pueda resultar peligrosa si se pierde su control y prolifera por encima de una determinada temperatura a la que funden los materiales empleados en el reactor, así como si se producen escapes de radiación nociva por esa u otra causa.
La energía nuclear se caracteriza por producir, además de una gran cantidad de energía eléctrica, residuos nucleares que hay que albergar en depósitos aislados y controlados durante largo tiempo. A cambio, no produce contaminación atmosférica de gases derivados de la combustión que producen el efecto invernadero, ni precisan el empleo de combustibles fósiles para su operación. Sin embargo, las emisiones contaminantes indirectas derivadas de su propia construcción, de la fabricación del combustible y de la gestión posterior de los residuos radiactivos (se denomina gestión a todos los procesos de tratamiento de los residuos, incluido su almacenamiento) no son despreciables.
En España las centrales nucleares generan el 21% de la energía eléctrica necesaria.


Impacto ambiental
Gran parte del problema es la preocupación de la opinión pública en cuanto a la aceptación de la energía nuclear por los siguientes aspectos:
Posibles usos bélicos, ya que los combustibles nucleares son los materiales con que se fabrican las armas nucleares.
-El riesgo de accidentes que originen consecuencias tan graves como el ocurrido en la central de Chernobil.
-El alto nivel de radiactividad de las diferentes fases del ciclo nuclear, sobre todo en la eliminación de residuos.
-En cuanto a la gestión de los residuos procedentes de las centrales nucleares, conviene indicar que sufren una escrupulosa clasificación para proceder posteriormente a su adecuado almacenamiento en condiciones seguras. De esta clasificación resultan:
Residuos radiactivos de transición.- Son sobre todo los residuos de origen médico. Al desintegrarse durante el período de almacenamiento temporal se gestionan posteriormente como residuos no radiactivos.


Residuos de media y baja actividad.- Se trata de residuos en los que la radioactividad es lo suficientemente baja como para no producir calor.
Residuos de vida corta.- Son los que contienen nucleidos de unos treinta años de vida media con una concentración limitada de radionucleidos alfa de vida larga.
Residuos de vida larga.- Son los que tienen una concentración de radionucleidos superior a los establecidos para los residuos de vida corta.
Residuos de alta actividad.- Suelen ser los que proceden del tratamiento del combustible gastado y tienen una concentración de radionucleidos lo suficientemente grande como para generar calor.
El combustible gastado puede reprocesarse para recuperar el Uranio y el Plutonio para volver a utilizarlos. En este reproceso, tras haber sido almacenado temporalmente en las piscinas de las centrales para su enfriamiento, se obtienen residuos de alta, media y baja actividad y cada uno de ellos se trata de distinta manera para evitar la contaminación y el impacto ambiental y minimizar los riesgos en caso de accidentes.
Por ejemplo, al recuperar y separar el uranio y el plutonio quedan en una disolución acuosa una serie de residuos de alta actividad. Este líquido se vitrifica para convertirlo en un residuo sólido que se guarda en una cápsula de acero inoxidable, de manera que se obtiene un residuo sólido de alta actividad.


Existen otros residuos sólidos de actividad media y baja que se obtienen en las diferentes fases de reproceso del combustible gastado. Todos estos residuos se clasifican y se almacenan en bidones de acero que se encierran en contenedores de cemento en instalaciones designadas y preparadas para la gestión y almacenamiento de los residuos de forma segura hasta que la radiactividad alcance el nivel de la radiación natural.
Además los vertidos al exterior de las centrales nucleares son mínimos y son sobre todo muy diluidos en líquidos a través del canal de descarga y grandes cantidades de aire con muy baja radiactividad a través de la chimenea.

cnicas para reducir el impacto ambiental
Evitar las emisiones de gases de invernadero La creciente utilización de energía nucleoeléctrica desde el decenio de 1960 sumada a los aumentos constantes del aprovechamiento de la energía hidroeléctrica han ayudado a frenar la producción mundial de dióxido de carbono. Si la energía eléctrica de origen nuclear generada anualmente en el mundo fuese producida por centrales de carbón, de emisiones adicionales se originarían 1600 millones de toneladas de CO2.
En otras palabras, si en la actualidad el mundo no utilizara energía nucleoeléctrica, las emisiones mundiales de dióxido de carbono aumentarían, como mínimo, en un 8% cada año.
La energía nucleoeléctrica es también más benigna para el medio ambiente desde el punto de vista de la gestión de desechos. Además de las grandes cantidades de gases de invernadero y de ácido sulfúrico generadas, una central de carbón de 1000 MW(e) produce anualmente unas 300 000 toneladas de cenizas que contienen, entre otras cosas, materiales radiactivos y metales pesados que terminan en los vertederos y en la atmósfera. En cambio, los desechos radiactivos producidos por una central nuclear de la misma potencia ascienden solo a unas 800 toneladas de desechos de actividad baja y media y a unas 30 toneladas de desechos de actividad alta al año, los cuales pueden aislarse de la biosfera.
Aunque los gobiernos se han comprometido con la tendencia mundial hacia una reducción de las cantidades de CO2 producidas por cada unidad de energía consumida, relativamente pocos países han logrado reducir la producción de gases de invernadero mediante el paso a los combustibles no fósiles. Francia, el Japón, la India, la República de Corea y Suecia han reducido notablemente sus emisiones de CO2 por unidad de producción de energía en hasta un 30% a lo largo de los últimos 30 años. En países que no emplean energía nucleoeléctrica (como Irlanda, Italia y Dinamarca) las emisiones relacionadas con la energía han disminuido en menos del 10%.
El futuro energéticolograr un equilibrio La combinación de crecimiento demográfico, desarrollo económico e industrialización en el mundo entero significa que el consumo mundial de energía continuará aumentando. Estas tendencias, sumadas al mantenimiento del empleo de combustibles fósiles para producir energía primaria, también significan que las emisiones de gases de invernadero continuarán aumentando en el mundo entero. Aun con medidas estrictas de reducción, las proyecciones actuales no muestran una estabilización de las emisiones hasta aproximadamente el año 2050.
En este contexto ambiental más amplio, algunos gobiernos y empresas de electricidad estudian actualmente el empleo de la energía nucleoeléctrica, especialmente en el mundo en desarrollo. Con su programa ``Decades'', el OIEA trabaja conjuntamente con muchos de estos países para efectuar una planificación energética amplia mediante la evaluación comparada de las diversas fuentes de energía y sus efectos respectivos en la salud y el medio ambiente.

Cuando la opción nuclear se considera viable, el OIEA puede, si así se desea, prestar asistencia a los Estados Miembros para una cuidadosa planificación de su aprovechamiento, e incluso prestar ayuda para la creación de las infraestructuras industriales y organizativas adecuadas y la capacitación de personal, y para que se garanticen la eficacia y la seguridad de la explotación y el mantenimiento de las instalaciones nucleoeléctricas.
Purificación del aire En muchos países industrializados un amplio sector de la opinión pública sigue dudoso u opuesto con respecto a un aumento de la utilización de la energía nucleoeléctrica o incluso con respecto a que su empleo continúe en los niveles actuales. Dicha oposición gira en torno a tres factores: el temor a los accidentes, el temor a los desechos radiactivos de actividad larga y el temor a que la utilización de la energía nucleoeléctrica contribuya a la proliferación de las armas nucleares. Ahora bien, la expansión de la energía nucleoeléctrica no se ha traducido en absoluto en una proliferación de las armas nucleares. Por el contrario, ha aumentado constantemente el número de países comprometidos con la no proliferación. Mientras el público y los medios de información siguen reaccionando vivamente ante cualquier pequeña perturbación en una instalación nuclear, en los hechos las centrales nucleares generalmente dan muestras de ser muy fiables y resistentes. Las centrales nucleares tienen una experiencia operacional acumulada de cerca de 7200 años-reactor. Las enseñanzas acumuladas se han utilizado para hacer cambios en la ingeniería y el diseño operacional a fin de lograr una mayor fiabilidad y seguridad. Al igual que cualquier otra fuente de energía, la energía nucleoeléctrica genera desechos que exigen una gestión y evacuación apropiadas. Las tecnologías para la seguridad de la evacuación de desechos radiactivos de actividad baja e intermedia son de una eficacia comprobada y se utilizan ampliamente. El almacenamiento a largo plazo de desechos de actividad alta, como es el caso del combustible gastado, en condiciones seguras es técnicamente posible pero tropieza con obstáculos políticos que los gobiernos deben superar.
Muchos países trabajan actualmente con apremio para seleccionar emplazamientos o construir y acabar instalaciones para la evacuación a largo plazo de desechos de actividad alta. Las instalaciones subterráneas profundas de esta índole tendrán que ajustarse a las normas más altas de seguridad ambiental, geológica y humana. La comunidad nuclear tiene conciencia de sus responsabilidades e invierte colectivamente más en medidas de seguridad que cualquier otra industria que se le pueda comparar.

Centrales instalada en España o en el mundo

C.N. José Cabrera
Localización: Almonacid de Zorita
Puesta en marcha: 1968
Potencia instalada: 160 MW
Producción desde origen: 29.371.418 MW·h




C.N. Santa Mª de Garoña
Localización: Santa Mª de Garoña (Burgos)
Puesta en marcha: 1971
Potencia instalada: 466 MW
Producción desde origen: 84.222.228 MW·h




C.N. Almaraz 1 y 2
Localización: Navalmoral de la Mata (Cáceres)
Puesta en marcha: 1971; 1983
Potencia instalada: 973'5 MW y 982'6 MW
Producción desde origen: 116.388.142 MW·h y 112.940.280 MW·h





C.N. Cofrentes
Localización: Cofrentes (Valencia)
Puesta en marcha: 1984
Potencia instalada: 1.025'4 MW
Producción desde origen: 113.367.155 MW·h





C.N. Vandellós 2
Localización: Hospitalet de L'Infant (Tarragona)
Puesta en marcha: Marzo 1988
Potencia instalada: 1057 MW
Producción desde origen: 88.857.711 MW·h





C.N. Trillo 1
Localización: Trillo (Guadalajara)
Puesta en marcha: Mayo 1988
Potencia instalada: 1.066 MW
Producción desde origen: 88.826.740 MW·h





Centrales térmicas

Una central termoeléctrica es una instalación empleada para la generación de energía eléctrica a partir de la energía liberada en forma de calor, normalmente mediante la combustión de combustibles fósiles como petróleo, gas natural o carbón. Este calor es empleado por un ciclo termodinámico convencional para mover un alternador y producir energía eléctrica. Este tipo de generación eléctrica es contaminante pues libera dióxido de carbono.
Por otro lado, también existen centrales termoeléctricas que emplean fisión nuclear del uranio para producir electricidad. Este tipo de instalación recibe el nombre de central nuclear.


Centrales termoeléctricas clásicas

Se denominan centrales clásicas a aquellas centrales térmicas que emplean la combustión del carbón, petróleo (fuel) o gas natural para generar la energía eléctrica. Son consideradas las centrales más económicas y rentables, por lo que su utilización está muy extendida en el mundo económicamente avanzado y en el mundo en vías de desarrollo, a pesar de que estén siendo criticadas debido a su elevado impacto medioambiental. Este tipo de centrales eléctricas generan el 16,5% de la energía eléctrica necesaria en España.

Centrales termoeléctricas de ciclo combinado
En la actualidad se están construyendo numerosas centrales termoeléctricas de las denominadas de ciclo combinado, que son un tipo de central que utiliza gas natural, gasóleo o incluso carbón preparado como combustible para alimentar una turbina de gas. Luego los gases de escape de la turbina de gas todavía tienen una elevada temperatura, se utilizan para producir vapor que mueve una segunda turbina, esta vez de vapor. Cada una de estas turbinas está acoplada a su correspondiente alternador para generar la electricidad como en una central termoeléctrica clásica.
Normalmente durante el proceso de partida de estas centrales, sólo funciona la turbina de gas, a este modo de operación se le llama ciclo abierto. Si bien la mayoría de las centrales de este tipo pueden intercambiar de combustible (entre gas y diésel) incluso en funcionamiento. Al funcionar con petroleo diésel ven afectada su potencia de salida (baja un 10% aprox.), y los intervalos entre mantenimientos mayores y fallas, se reducen fuertemente.
Como la diferencia de temperaturas que se produce entre la combustión y los gases de escape es más alta que en el caso de una turbina de gas o una de vapor, se consiguen rendimientos muy superiores, del orden del 55%.
Este tipo de centrales generan el 34% de las necesidades españolas de energía eléctrica.


Impacto ambiental
Artículo principal: Impacto ambiental potencial de proyectos de centrales termoeléctricas
La emisión de residuos a la atmósfera y los propios procesos de combustión que se producen en las centrales térmicas tienen una incidencia importante sobre el medio ambiente. Para tratar de paliar, en la medida de lo posible, los daños que estas plantas provocan en el entorno natural, se incorporan a las instalaciones diversos elementos y sistemas.
El problema de la contaminación es máximo en el caso de las centrales termoeléctricas convencionales que utilizan como combustible carbón. Además, la combustión del carbón tiene como consecuencia la emisión de partículas y ácidos de azufre. En las de fueloil los niveles de emisión de estos contaminantes son menores, aunque ha de tenerse en cuenta la emisión de óxidos de azufre y hollines ácidos, prácticamente nulos en las plantas de gas.
En todo caso, en mayor o menor medida todas ellas emiten a la atmósfera dióxido de carbono, CO2. Según el combustible, y suponiendo un rendimiento del 40% sobre la energía primaria consumida.
Combustible Emisión de CO2kg/kWh Gas natural 0,44 Fuelóleo 0,71 Biomasa (leña, madera) 0,82 Carbón 1,45
Las centrales de gas natural pueden funcionar con el llamado ciclo combinado, que permite rendimientos mayores (de hasta un poco más del 50%), lo que todavía haría las centrales que funcionan con este combustible menos contaminantes.

Ventajas e inconvenientes

Ventajas
Son las centrales más baratas de construir (teniendo en cuenta el precio por megavatio instalado), especialmente las de carbón, debido a la simplicidad (comparativamente hablando) de construcción y la energía generada de forma masiva.
Las centrales de ciclo combinado de gas natural son mucho más eficientes (alcanzan el 50%) que una termoeléctrica convencional, aumentando la energía eléctrica generada (y por tanto, las ganancias) con la misma cantidad de combustible, y rebajando las emisiones citadas más arriba en un 20%, 0,35 kg de CO2, por kWh producido.l

Inconvenientes
El uso de combustibles fósiles genera emisiones de gases de efecto invernadero y de lluvia ácida a la atmósfera, junto a partículas volantes (en el caso del carbón) que pueden contener metales pesados.
Al ser los combustibles fósiles una fuente de energía finita, su uso está limitado a la duración de las reservas y/o su rentabilidad económica.
Sus emisiones térmicas y de vapor pueden alterar el microclima local.
Afectan negativamente a los ecosistemas fluviales debido a los vertidos de agua caliente en estos.
Su rendimiento (en muchos casos) es bajo (comparado con el rendimiento ideal), a pesar de haberse realizado grandes mejoras en la eficiencia (un 30-40% de la energía liberada en la combustión se convierte en electricidad, de media)


Seis de las centrales tienen más de 1.000 MW de potencia: • As Pontes de García Rodríguez ( Coruña), con más de 1.400 MW, la mayor de España. Consume carbón, tanto nacional como importado.• Compostilla (León), con 1.312 MW. Utiliza carbones de la cuenca minera en que está enclavada.• Litoral de Almería (Carboneras), (Almería), con 1.100 MW. Utiliza carbón importado.• Castellón (Castellón), con 1.083 MW Emplea como combustible fuel-oil.• Teruel (Andorra), con 1.050 MW. Emplea carbones de la cuenca minera aragonesa.• San Adrián (Barcelona), con 1.050 MW. Consume fuel y gas natural. Entre las seis, suponen la cuarta parte de la potencia térmica convencional instalada, y el 12% del total de la potencia eléctrica.La distribución de las centrales térmicas responde a factores como los siguientes:• La proximidad de cuencas mineras que las abastezcan de combustible. Esto explica la gran densidad de centrales en la cuenca minera de Asturias y León, así como el grupo de centrales (Teruel y Escucha) en la cuenca de lignitos aragonesa.• La localización costera, que facilita su abastecimiento con carbones importados o fuel. Es el caso del rosario de centrales en el sur y levante: Castellón, Escombreras, Litoral de Almería, Algeciras y Cádiz. Secundariamente, la localización sobre un gran oleoducto, como el que circula desde Zaragoza a Rota (Puertollano).• La proximidad a los centros urbanos que debe abastecer. Aunque el transporte de energía eléctrica a largas distancias es una actividad que no ofrece especiales dificultades, áreas urbanas como la de Barcelona y Bilbao están rodeadas de una red relativamente densa de centrales, lo que no sucede en Madrid.
Impacto ambiental
Estas centrales suelen presentarse como tecnologías limpias debido a la reducción de las emisiones de contaminantes que en ellas se consiguen. Se alude en primer término al vertido casi nulo de Dióxido de Azufre (SO2) debido a que este elemento (S) es prácticamente inexistente en el gas natural. Y se insiste mucho en las reducciones que comportaba en las emisiones de Dióxido de Carbono (CO2)por kWh producido, con el consiguiente alivio del efecto invernadero. Se omite señalar que nuestro país ya superó en el año 1999 los límites fijados para el ¡2010! por el compromiso firmado en Kioto de emisión de gases de invernadero, y que la producción de electricidad ha sido -y muy probablemente seguirá siendo- uno de los responsables de este crecimiento.
Este crecimiento desbocado se ha debido en buena medida a la fuerte reducción de los precios de la electricidad. Desde 1996 dichos precios han bajado en términos reales más del 23% en los clientes sometidos a tarifa (pequeños consumidores) y más del 28% para los que negocian directamente el precio del kWh. Debido a dicho abaratamiento y a la existencia de una etapa de fuerte crecimiento económico la demanda de electricidad ha crecido a tasas de más del 6% en este período. Algo desconocido desde los 70. Un objetivo político de primer orden del gobierno ha sido trasladar a los precios finales de la energía la profunda reducción que se había operado en los costes. Con ello reducía de forma significativa la inflación y ganaba votos. El "único" problema ha sido el aumento desbocado de los impactos ambientales. Y por supuesto de las emisiones de CO2. Por ello, aunque se produjera un proceso de sustitución acelerada de centrales de carbón por grupos de gas en ciclo combinado, el crecimiento de la demanda-pasada y previsiblemente futura- superaría al efecto combinado de mejora de la eficiencia y sustitución de combustibles. Las emisiones no se contienen.
No deben ignorarse tampoco, por su contribución al cambio climático, las fugas accidentales de metano (CH4,componente casi exclusivo del gas natural) cuyo potencial de calentamiento a 20 años es 56 veces mayor que el de una cantidad igual de CO2. Según el IPCC (Panel Intergubernamental de expertos en Cambio Climático) la tasa de aumento anual de este gas es del 0,6% y es responsable, aproximadamente, del 16% del calentamiento terrestre actual. Comentar que se compadece mal las previsiones de reducir las emisiones de CH4 en casi un 24% en el 2010 con respecto a 1990, como preveía el Consejo Nacional del Clima, con la idea de aumentar mucho la red de gasoductos en nuestro país.
Un balance similar ofrecen las emisiones de óxidos de Nitrógeno (NOx). Estas sustancias son componentes de las llamadas lluvias ácidas y se producen por reacción directa del Nitrógeno y el Oxígeno del aire al elevarse la temperatura. Una central de aproximadamente 1000 MW. que funcione unas 6.600 horas equivalentes al año emitiría del orden de 2.100 Tm. Estas sustancias son también precursores de la formación de Ozono troposférico, un peligroso contaminante que está alcanzando valores alarmantes en la atmósfera de ciertas zonas del territorio peninsular (Madrid, Huelva, Tarragona, Puertollano...). En bastantes de estos sitios se están superando los límites establecidos cuando las condiciones meteorológicas facilitan su formación (elevada insolación y temperatura). No es nada aventurado suponer que el caudal de emisión que representa la planta agravará de forma significativa el fenómeno hasta convertirlo en un problema grave de difícil o imposible control. Se provocarán con ello daños significativos sobre la salud de quienes allí habitan.
Un problema que deben enfrentar estas plantas son sus necesidades de refrigeración. Como quedó dicho más arriba necesitan evacuar aproximadamente el 45% de su potencia térmica total. Las técnicas convencionales son dos: circuito abierto y torres húmedas. En la primera se necesitan emplear ingentes cantidades de agua que es devuelta al medio después de sufrir un salto térmico significativo. Con el fin de no dañar a los ecosistemas suelen existir dos límites a respetar. El primero es que dicho salto no supere en ningún caso los 3ºC, y el segundo que la temperatura total del agua no llegue a los 30ºC en ningún momento). No existe caudal suficiente en las cuencas altas o medias de ningún río peninsular para utilizar este sistema que es el más sencillo y barato de implantar. Su uso se limita a las plantas costeras. Es preciso estudiar siempre el impacto específico sobre los ecosistemas costeros ya que en algún caso pueden verse afectados por esta polución térmica.
El otro sistema tradicional (torres húmedas) "aprovecha" el calor residual para evaporar agua y necesita caudales menores. Aunque este es un uso consuntivo del agua de difícil encaje en cuencas que no pueden definirse en modo alguno como excedentarias. El consumo, para los rangos de potencia demandados, se sitúa entre 0,15 y 0,7 m3/seg. A la limitación en la disponibilidad del recurso hay que añadir la necesidad de purgar las sales contenidas en el agua evaporada que en todas las circunstancias degrada su calidad y que en algún caso puede llevar el impacto hasta valores inasumibles. Tampoco deben olvidarse entonces las alteraciones del microclima del lugar debido a las nubes formadas.Recientemente hay compañías promotoras de proyectos (Entergy, Intergen...) que aseguran ser capaces de evacuar el calor residual con la ayuda sólo del aire en cualquier época del año, con un mecanismo no muy diferente del de los radiadores de los coches. Esto exige una superficie de contacto muy grande que lleva a la necesidad de ingentes cantidades de terreno o al empleo de elaboradísimas estructuras de ingeniería. En ambos casos se traduce en sustanciales incrementos de los costes de construcción. Es preciso además estudiar el impacto sobre los ecosistemas y cultivos cercanos de este aire recalentado. Debe mantenerse un saludable escepticismo sobre la posibilidad real de construir estos sistemas en nuestro país, hay que recordar que hasta ahora no existe nada igual. Lo más parecido es el sistema mixto de refrigeración aire-agua instalado en la central nuclear de Ascó que se sitúa a mitad de camino entre las opciones segunda y tercera de las enunciadas.
Y es preciso analizar en cada caso los impactos de las instalaciones anexas (posibles depósitos del combustible principal o de los auxiliares, equipamientos de producción eléctrica...), los específicos de la fase de construcción (afecciones a vías de acceso, ruidos, polvo, efectos sobre cauces, sobre valores culturales o arqueológicos...), las servidumbres urbanísticas provocadas por las líneas eléctricas de evacuación, por las subestaciones necesarias...
Técnicas para reducir el impacto ambiental
Las nuevas tecnologías que se han aplicado permiten:

1) Reducción de emisiones de SO2 (anhidrido sulfuroso ):

Solución adoptada: Desulfuración de gases vía húmeda con agua de mar y con carbonato
cálcico (caliza) diluido.

2) Reducción de emisiones de NOx (oxidos de nitrogeno):

Solución adoptada: Quemadores de bajo NOx complementado con molinos de alta capacidad y clasificadores rotativos.

3) Reducción de Vertidos (Sólidos en suspensión) y residuos.

Solución adoptada: Cenicero seco, con reducción de inquemados y aprovechamiento de residuos.

4) Mejora eficiencia: Menor consumo de carbón por kWh producido.

Solución adoptado: Rotor AP-PI de con nuevo diseño de toberas.





jueves, 19 de febrero de 2009

Centrales hidroeléctricas

Una central hidroeléctrica es aquella que utiliza energía hidráulica para la generación de energía eléctrica. Son el resultado actual de la evolución de los antiguos molinos que aprovechaban la corriente de los ríos para mover una rueda
Podemos considerar que el esquema de una central eléctrica es




En general, la energía mecánica procede de la transformación de la energía potencial del agua almacenada en un embalse; de la energía térmica suministrada al agua mediante la combustión del carbón, gas natural, o fuel, o a través de la energía de fisión del uranio.
Para realizar la conversión de energía mecánica en eléctrica, se emplean unos generadores, más complicados que los que acabamos de ver en la pregunta anterior, que constan de dos piezas fundamentales:
-El estator: Armadura metálica, que permanece en reposo, cubierta en su interior por unos hilos de cobre, que forman diversos circuitos.
-El rotor: Está en el interior del estator y gira accionado por la turbina. Está formado en su parte interior por un eje, y en su parte más externa por unos circuitos, que se transforman en electroimanes cuando se les aplica una pequeña cantidad de corriente. Cuando el rotor gira a gran velocidad, debido a la energía mecánica aplicada en las turbinas, se produce unas corrientes en los hilos de cobre del interior del estator. Estas corrientes proporcionan al generador la denominada fuerzaelectromotriz, capaz de producir energía eléctrica a cualquier sistema conectado a él.



Como hemos visto la turbina es la encargada de mover el rotor del generador y producir la corriente eléctrica. La turbina a su vez es accionada por la energía mecánica del vapor de agua a presión o por un chorro de agua.
Todas las centrales eléctricas constan de un sistema de "turbina-generador" cuyo funcionamiento básico es, en todas ellas, muy parecido, variando de unas a otras la forma en que se acciona la turbina, o sea, dicho de otro modo en que fuente de energía primaria se utiliza, para convertir la energía contenida en ella en energía eléctrica.





Impactos ambientales potenciales
Los potenciales impactos ambientales de los proyectos hidroeléctricos son siempre significativos. Sin embargo existen muchos factores que influyen en la necesidad de aplicar medidas de prevención.
Principalmente: La construcción y operación de la represa y el embalse constituyen la fuente principal de impactos del proyecto hidroeléctrico. Los proyectos de las represas de gran alcance pueden causar cambios ambientales irreversibles, en una área geográfica muy extensa; por eso, tienen el potencial de causar impactos importantes. Ha aumentado la crítica de estos proyectos durante la última década. Los críticos más severos sostienen que los costos sociales, ambientales y económicos de estas represas pesan más que sus beneficios y que, por lo tanto, no se justifica la construcción de las represas grandes. Otros mencionan que, en algunos casos, los costos ambientales y sociales puede ser evitados o reducidos a un nivel aceptable, si se evalúan, cuidadosamente, los problemas potenciales y se implantan medidas correctivas que son costosas.
El área de influencia de una represa se extiende desde los límites superiores del embalse hasta los esteros y las zonas costeras y costa afuera, e incluyen el embalse, la represa y la cuenca del río, aguas abajo de la represa. Hay impactos ambientales directos asociados con la construcción de la represa (p.ej., el polvo, la erosión, problemas con el material prestado y de los desechos), pero los impactos más importantes son el resultado del embalse del agua, la inundación de la tierra para formar el embalse, y la alteración del caudal de agua, aguas abajo. Estos efectos ejercen impactos directos en los suelos, la vegetación, la fauna y las tierras silvestres, la pesca, el clima y la población humana del área.
Los efectos indirectos de la represa incluyen los que se asocian con la construcción, el mantenimiento y el funcionamiento de la represa (p.ej., los caminos de acceso, los campamentos de construcción, las líneas de transmisión de energía) y el desarrollo de las actividades agrícolas, industriales o municipales que posibilita la represa.
Además de los efectos directos e indirectos de la construcción de la represa sobre el medio ambiente, se deberán considerar los efectos del medio ambiente sobre la represa. Los principales factores ambientales que afectan el funcionamiento y la vida de la represa son aquellos que se relacionan con el uso de la tierra, el agua y los otros recursos en las áreas de captación aguas arriba del reservorio (p.ej., la agricultura, la colonización, el desbroce del bosque) que pueden causar una mayor acumulación de limos, y cambios en la cantidad y calidad del agua del reservorio y del río. Se tratan estos aspectos en los estudios de ingeniería.
El beneficio obvio del proyecto hidroeléctrico es la energía eléctrica, la misma que puede apoyar el desarrollo económico y mejorar la calidad de la vida en el área servida. Los proyectos hidroeléctricos requieren mucha mano de obra y ofrecen oportunidades de empleo. Los caminos y otras infraestructuras pueden dar a los pobladores mayor acceso a los mercados para sus productos, escuelas para sus hijos, cuidado de salud y otros servicios sociales. Además, la generación de la energía hidroeléctrica proporciona una alternativa para la quema de los combustibles fósiles, o la energía nuclear, que permite satisfacer la demanda de energía sin producir agua caliente, emisiones atmosféricas, ceniza, desechos radioactivos ni emisiones de CO2. Si el reservorio es, realmente, una instalación de usos múltiples, es decir, si los diferentes propósitos declarados en el análisis económico no son, mutuamente, inconsistentes, los otros beneficios pueden incluir el control de las inundaciones y la provisión de un suministro de agua más confiable y de más alta calidad para riego, y uso doméstico e industrial. La intensificación de la agricultura, localmente, mediante el uso del riego, puede, a su vez, reducir la presión que existe sobre los bosques primarios, los hábitat intactos de la fauna, y las áreas en otras partes que no sean adecuadas para la agricultura. Asimismo, las represas pueden crear pesca en el reservorio y posibilidades para producción agrícola en el área del reservorio que pueden más que compensar las pérdidas sufridas por estos sectores debido a su construcción.

Manejo de la cuenca hidrográfica
Es un fenómeno común, ver el aumento en la presión sobre las áreas altas encima de la represa, como resultado del reasentamiento de la gente de las áreas inundadas y la afluencia incontrolada de los recién llegados al área. Se degrada el medio ambiente del sitio, la calidad del agua se deteriora, y las tasas de sedimentación del reservorio aumentan, a raíz del desbroce del bosque para agricultura, la presión sobre los pastos, el uso de químicos agrícolas, y la tala de los árboles para madera o leña. Asimismo, el uso del terreno de la cuenca alta afecta la calidad y cantidad del agua que ingresa al río. Por eso, es esencial que los proyectos de las represas sean planificados y manejados considerando el contexto global de la cuenca del río y los planes regionales de desarrollo, incluyendo, tanto las áreas superiores de captación, aguas arriba de la represa y la planicie de inundación, como las áreas de la cuenca hidrográfica, aguas abajo.

Otros impactos ambientales
Los proyectos hidroeléctricos, necesariamente, implican la construcción de Líneas de transmisión para transportar la energía a los usuarios.


Técnicas que se utilizan para reducir el impacto
mediambiental

Tener cuidado a la hora de construir una presa. Si esta fabricada con materiales de calidad y tener cuidado de que no se produca una inundación. La utilización de filtros


Centrales instaladas en españa o en el mundo

España cuenta con cuatro de las 30 centrales eléctricas más contaminantes de Europa, según un informe de WWF/Adena. La de Aboño, en Asturias es la tercera que más CO2 emite en relación con sus niveles de eficacia.
WWF/Adena ha analizado las emisiones absolutas de CO2 en millones de toneladas por año de las centrales eléctricas de los 25 países de la UE y ha clasificado a las 30 que más dióxido de carbono emiten de acuerdo con su nivel de eficiencia o emisiones relativas (gramos de CO2 por kilovatio hora), según informaron fuentes del colectivo ecologista.
La gran mayoría de las treinta más contaminantes están ubicadas en Alemania (9 centrales), Polonia (5 centrales), e Italia, España y Gran Bretaña (con 4 plantas cada una). España destaca por ocupar el tercer lugar en la lista, con su central eléctrica de Hidrocantábrico situada en Aboño (Gijón) por sus emisiones de CO2 en relación con la electricidad producida.
Las otras tres que aparecen en esta clasificación son de Endesa y están localizadas en As Pontes (A Coruña), Compostilla (León) y Litoral de Almería (Almería). Las emisiones de CO2 son la causa principal del cambio climático y de los devastadores impactos del clima en las personas y la naturaleza, según la organización.
"El sector eléctrico es responsable de la cuarta parte de las emisiones de nuestro país, debido en gran parte a las centrales eléctricas de carbón que son las que más CO2 emiten por Kw/h producido. Para combatir el cambio climático tenemos que reemplazarlas por alternativas más limpias, como son las energías renovables", asegura Mar Asunción, responsable del Programa de Cambio Climático de WWF/Adena.
El informe "Las 30 centrales mas contaminantes" muestra que tan sólo media docena de grandes empresas son responsables de la mayoría de las centrales eléctricas más emisoras de Europa. De hecho, 19 de las 30 centrales analizadas están en manos de RWE (Alemania), Vattenfall (Suecia), Enel (Italia), Endesa (España), EON (Alemania) y EDF (Francia).





La energia

En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural y la tecnología asociada para explotarla y hacer un uso industrial o económico del mismo.