jueves, 26 de febrero de 2009

Nuclears


Una central nuclear es una instalación industrial empleada para la generación de energía


eléctrica El funcionamiento de las centrales térmicas nucleares es muy semejante al de las térmicas convencionales. La diferencia está en el combustible utilizado para producir energía. En el caso de las centrales térmicas se usan combustibles fósiles (carbón, petróleo, gas) y en las nucleares, uranio o plutonio.



1. En las centrales térmicas y nucleares, el calor obtenido de los combustibles (combustión y reacción nuclear, respectivamente) se emplea para calentar el agua contenida en una caldera, que se transforma en vapor de agua.



2. Ese vapor se conduce a una turbina, moviendo los álabes o aspas de ésta.



3. El eje de la turbina está conectado a un generador de corriente, transformando la energía mecánica en energía eléctrica.



4. El vapor que sale de la turbina se condensa, al pasar por un circuito de refrigeración, y regresa a la caldera.



Desde una sala de control se gobierna la central y se manejan los dispositivos de seguridad que detienen el reactor en cuanto se atisba el mínimo riesgo de escape o mal funcionamiento


A partir de energía nuclear, que se caracteriza por el empleo de materiales fisionables que mediante reacciones nucleares proporcionan calor. Este calor es empleado por un ciclo termodinámico convencional para mover un alternador y producir energía eléctrica.
Estas centrales constan de uno o varios reactores, que son contenedores (llamados habitualmente vasijas) en cuyo interior se albergan varillas u otras configuraciones geométricas de minerales con algún elemento fisil (es decir, que puede fisionarse) o fértil (que puede convertirse en fisil por reacciones nucleares), usualmente uranio, y en algunos combustibles también plutonio, generado a partir de la activación del uranio. En el proceso de fisión radiactiva, se establece una reacción que es sostenida y moderada mediante el empleo de elementos auxiliares dependientes del tipo de tecnología empleada.

Torres de refrigeración de la central nuclear de Cofrentes, España, expulsando vapor de agua.
Las instalaciones nucleares son construcciones muy complejas por la variedad de tecnologías industriales empleadas y por la elevada seguridad con la que se les dota. Las características de la reacción nuclear hacen que pueda resultar peligrosa si se pierde su control y prolifera por encima de una determinada temperatura a la que funden los materiales empleados en el reactor, así como si se producen escapes de radiación nociva por esa u otra causa.
La energía nuclear se caracteriza por producir, además de una gran cantidad de energía eléctrica, residuos nucleares que hay que albergar en depósitos aislados y controlados durante largo tiempo. A cambio, no produce contaminación atmosférica de gases derivados de la combustión que producen el efecto invernadero, ni precisan el empleo de combustibles fósiles para su operación. Sin embargo, las emisiones contaminantes indirectas derivadas de su propia construcción, de la fabricación del combustible y de la gestión posterior de los residuos radiactivos (se denomina gestión a todos los procesos de tratamiento de los residuos, incluido su almacenamiento) no son despreciables.
En España las centrales nucleares generan el 21% de la energía eléctrica necesaria.


Impacto ambiental
Gran parte del problema es la preocupación de la opinión pública en cuanto a la aceptación de la energía nuclear por los siguientes aspectos:
Posibles usos bélicos, ya que los combustibles nucleares son los materiales con que se fabrican las armas nucleares.
-El riesgo de accidentes que originen consecuencias tan graves como el ocurrido en la central de Chernobil.
-El alto nivel de radiactividad de las diferentes fases del ciclo nuclear, sobre todo en la eliminación de residuos.
-En cuanto a la gestión de los residuos procedentes de las centrales nucleares, conviene indicar que sufren una escrupulosa clasificación para proceder posteriormente a su adecuado almacenamiento en condiciones seguras. De esta clasificación resultan:
Residuos radiactivos de transición.- Son sobre todo los residuos de origen médico. Al desintegrarse durante el período de almacenamiento temporal se gestionan posteriormente como residuos no radiactivos.


Residuos de media y baja actividad.- Se trata de residuos en los que la radioactividad es lo suficientemente baja como para no producir calor.
Residuos de vida corta.- Son los que contienen nucleidos de unos treinta años de vida media con una concentración limitada de radionucleidos alfa de vida larga.
Residuos de vida larga.- Son los que tienen una concentración de radionucleidos superior a los establecidos para los residuos de vida corta.
Residuos de alta actividad.- Suelen ser los que proceden del tratamiento del combustible gastado y tienen una concentración de radionucleidos lo suficientemente grande como para generar calor.
El combustible gastado puede reprocesarse para recuperar el Uranio y el Plutonio para volver a utilizarlos. En este reproceso, tras haber sido almacenado temporalmente en las piscinas de las centrales para su enfriamiento, se obtienen residuos de alta, media y baja actividad y cada uno de ellos se trata de distinta manera para evitar la contaminación y el impacto ambiental y minimizar los riesgos en caso de accidentes.
Por ejemplo, al recuperar y separar el uranio y el plutonio quedan en una disolución acuosa una serie de residuos de alta actividad. Este líquido se vitrifica para convertirlo en un residuo sólido que se guarda en una cápsula de acero inoxidable, de manera que se obtiene un residuo sólido de alta actividad.


Existen otros residuos sólidos de actividad media y baja que se obtienen en las diferentes fases de reproceso del combustible gastado. Todos estos residuos se clasifican y se almacenan en bidones de acero que se encierran en contenedores de cemento en instalaciones designadas y preparadas para la gestión y almacenamiento de los residuos de forma segura hasta que la radiactividad alcance el nivel de la radiación natural.
Además los vertidos al exterior de las centrales nucleares son mínimos y son sobre todo muy diluidos en líquidos a través del canal de descarga y grandes cantidades de aire con muy baja radiactividad a través de la chimenea.

cnicas para reducir el impacto ambiental
Evitar las emisiones de gases de invernadero La creciente utilización de energía nucleoeléctrica desde el decenio de 1960 sumada a los aumentos constantes del aprovechamiento de la energía hidroeléctrica han ayudado a frenar la producción mundial de dióxido de carbono. Si la energía eléctrica de origen nuclear generada anualmente en el mundo fuese producida por centrales de carbón, de emisiones adicionales se originarían 1600 millones de toneladas de CO2.
En otras palabras, si en la actualidad el mundo no utilizara energía nucleoeléctrica, las emisiones mundiales de dióxido de carbono aumentarían, como mínimo, en un 8% cada año.
La energía nucleoeléctrica es también más benigna para el medio ambiente desde el punto de vista de la gestión de desechos. Además de las grandes cantidades de gases de invernadero y de ácido sulfúrico generadas, una central de carbón de 1000 MW(e) produce anualmente unas 300 000 toneladas de cenizas que contienen, entre otras cosas, materiales radiactivos y metales pesados que terminan en los vertederos y en la atmósfera. En cambio, los desechos radiactivos producidos por una central nuclear de la misma potencia ascienden solo a unas 800 toneladas de desechos de actividad baja y media y a unas 30 toneladas de desechos de actividad alta al año, los cuales pueden aislarse de la biosfera.
Aunque los gobiernos se han comprometido con la tendencia mundial hacia una reducción de las cantidades de CO2 producidas por cada unidad de energía consumida, relativamente pocos países han logrado reducir la producción de gases de invernadero mediante el paso a los combustibles no fósiles. Francia, el Japón, la India, la República de Corea y Suecia han reducido notablemente sus emisiones de CO2 por unidad de producción de energía en hasta un 30% a lo largo de los últimos 30 años. En países que no emplean energía nucleoeléctrica (como Irlanda, Italia y Dinamarca) las emisiones relacionadas con la energía han disminuido en menos del 10%.
El futuro energéticolograr un equilibrio La combinación de crecimiento demográfico, desarrollo económico e industrialización en el mundo entero significa que el consumo mundial de energía continuará aumentando. Estas tendencias, sumadas al mantenimiento del empleo de combustibles fósiles para producir energía primaria, también significan que las emisiones de gases de invernadero continuarán aumentando en el mundo entero. Aun con medidas estrictas de reducción, las proyecciones actuales no muestran una estabilización de las emisiones hasta aproximadamente el año 2050.
En este contexto ambiental más amplio, algunos gobiernos y empresas de electricidad estudian actualmente el empleo de la energía nucleoeléctrica, especialmente en el mundo en desarrollo. Con su programa ``Decades'', el OIEA trabaja conjuntamente con muchos de estos países para efectuar una planificación energética amplia mediante la evaluación comparada de las diversas fuentes de energía y sus efectos respectivos en la salud y el medio ambiente.

Cuando la opción nuclear se considera viable, el OIEA puede, si así se desea, prestar asistencia a los Estados Miembros para una cuidadosa planificación de su aprovechamiento, e incluso prestar ayuda para la creación de las infraestructuras industriales y organizativas adecuadas y la capacitación de personal, y para que se garanticen la eficacia y la seguridad de la explotación y el mantenimiento de las instalaciones nucleoeléctricas.
Purificación del aire En muchos países industrializados un amplio sector de la opinión pública sigue dudoso u opuesto con respecto a un aumento de la utilización de la energía nucleoeléctrica o incluso con respecto a que su empleo continúe en los niveles actuales. Dicha oposición gira en torno a tres factores: el temor a los accidentes, el temor a los desechos radiactivos de actividad larga y el temor a que la utilización de la energía nucleoeléctrica contribuya a la proliferación de las armas nucleares. Ahora bien, la expansión de la energía nucleoeléctrica no se ha traducido en absoluto en una proliferación de las armas nucleares. Por el contrario, ha aumentado constantemente el número de países comprometidos con la no proliferación. Mientras el público y los medios de información siguen reaccionando vivamente ante cualquier pequeña perturbación en una instalación nuclear, en los hechos las centrales nucleares generalmente dan muestras de ser muy fiables y resistentes. Las centrales nucleares tienen una experiencia operacional acumulada de cerca de 7200 años-reactor. Las enseñanzas acumuladas se han utilizado para hacer cambios en la ingeniería y el diseño operacional a fin de lograr una mayor fiabilidad y seguridad. Al igual que cualquier otra fuente de energía, la energía nucleoeléctrica genera desechos que exigen una gestión y evacuación apropiadas. Las tecnologías para la seguridad de la evacuación de desechos radiactivos de actividad baja e intermedia son de una eficacia comprobada y se utilizan ampliamente. El almacenamiento a largo plazo de desechos de actividad alta, como es el caso del combustible gastado, en condiciones seguras es técnicamente posible pero tropieza con obstáculos políticos que los gobiernos deben superar.
Muchos países trabajan actualmente con apremio para seleccionar emplazamientos o construir y acabar instalaciones para la evacuación a largo plazo de desechos de actividad alta. Las instalaciones subterráneas profundas de esta índole tendrán que ajustarse a las normas más altas de seguridad ambiental, geológica y humana. La comunidad nuclear tiene conciencia de sus responsabilidades e invierte colectivamente más en medidas de seguridad que cualquier otra industria que se le pueda comparar.

Centrales instalada en España o en el mundo

C.N. José Cabrera
Localización: Almonacid de Zorita
Puesta en marcha: 1968
Potencia instalada: 160 MW
Producción desde origen: 29.371.418 MW·h




C.N. Santa Mª de Garoña
Localización: Santa Mª de Garoña (Burgos)
Puesta en marcha: 1971
Potencia instalada: 466 MW
Producción desde origen: 84.222.228 MW·h




C.N. Almaraz 1 y 2
Localización: Navalmoral de la Mata (Cáceres)
Puesta en marcha: 1971; 1983
Potencia instalada: 973'5 MW y 982'6 MW
Producción desde origen: 116.388.142 MW·h y 112.940.280 MW·h





C.N. Cofrentes
Localización: Cofrentes (Valencia)
Puesta en marcha: 1984
Potencia instalada: 1.025'4 MW
Producción desde origen: 113.367.155 MW·h





C.N. Vandellós 2
Localización: Hospitalet de L'Infant (Tarragona)
Puesta en marcha: Marzo 1988
Potencia instalada: 1057 MW
Producción desde origen: 88.857.711 MW·h





C.N. Trillo 1
Localización: Trillo (Guadalajara)
Puesta en marcha: Mayo 1988
Potencia instalada: 1.066 MW
Producción desde origen: 88.826.740 MW·h





No hay comentarios:

Publicar un comentario